ReaL NUMBERS

1.1 Introduction

In Class|X, you began your exploration of theworld of real numbersand encountered
irrational numbers. We continue our discussion on real numbers in this chapter. We
begin with two very important properties of positiveintegersin Sections 1.2 and 1.3,
namely the Euclid’sdivision algorithm and the Fundamental Theorem of Arithmetic.

Euclid's division algorithm, as the name suggests, has to do with divisibility of
integers. Stated simply, it saysany positiveinteger a can be divided by another positive
integer bin such away that it leaves aremainder r that issmaller than b. Many of you
probably recognisethisasthe usual long division process. Although thisresult isquite
easy to stateand understand, it hasmany applicationsrelated to the divisibility properties
of integers. We touch upon afew of them, and use it mainly to compute the HCF of
two positiveintegers.

The Fundamental Theorem of Arithmetic, on the other hand, hasto do something
with multiplication of positiveintegers. You aready know that every composite number
can be expressed as a product of primes in a unique way — thisimportant fact is the
Fundamental Theorem of Arithmetic. Again, whileitisaresult that iseasy to state and
understand, it has somevery deep and significant applicationsin thefield of mathematics.
We use the Fundamental Theorem of Arithmetic for two main applications. First, we
useit to provetheirrationality of many of the numbersyou studiedin Class1X, such as

J2, /3 and /5. Second, we apply thistheorem to explore when exactly the decimal

expansion of a rational number, say —p(q # 0), is terminating and when it is non-
terminating repeating. We do so by looking at the prime factorisation of the denominator

qof g .Youwill seethat the primefactorisation of gqwill completely reveal the nature
of the decimal expansion of P .
So let usbegin our exploration.
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1.2 Euclid’sDivision Lemma
Consider thefollowing folk puzzle*.

A trader was moving along a road selling eggs. An idler who didn’'t have
much work to do, started to get the trader into a wordy duel. This grew into a
fight, he pulled the basket with eggs and dashed it on the floor. The eggs broke.
The trader requested the Panchayat to ask the idler to pay for the broken eggs.
The Panchayat asked the trader how many eggs were broken. He gave the
following response:

If counted in pairs, one will remain;

If counted in threes, two will remain;

If counted in fours, three will remain;

If counted in fives, four will remain;

If counted in sixes, five will remain;

If counted in sevens, nothing will remain;

My basket cannot accomodate more than 150 eggs.

So, how many eggs were there? Let ustry and solve the puzzle. Let the number
of eggs be a. Then working backwards, we see that a is less than or equal to 150:

If counted in sevens, nothing will remain, which translatesto a = 7p + O, for
some natural number p. If counted in sixes, a= 6q+ 5.

If counted in fives, four will remain. It translatesto a = 5r + 4, for some natural
number .

If counted in fours, threewill remain. It translatesto a = 4s + 3, for some natural
number s.

If counted in threes, two will remain. It translatesto a= 3t + 2, for some natural
number t.

If counted in pairs, onewill remain. It translatesto a = 2u + 1, for some natural
number u.
That is, in each case, we have a and a positive integer b (in our example,

btakesvalues7, 6,5, 4, 3and 2, respectively) which dividesa and |eaves aremainder
r (inour case, r is 0, 5, 4, 3, 2 and 1, respectively), that is smaller than b. The

* Thisismodified form of apuzzlegivenin‘Numeracy Counts!’ by A. Rampal, and others.
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moment we write down such equations we are using Euclid’s division lemma,
which isgivenin Theorem 1.1.

Getting back to our puzzle, do you have any ideahow you will solveit?Yes! You
must ook for the multiples of 7 which satisfy all the conditions. By trial and error, you
will find he had 119 eggs.

In order to get afeel for what Euclid’sdivision lemmais, consider the following
pairs of integers:

17, 6; 5,12; 20,4

Like we did in the example, we can write the following relations for each such
pair:

17=6x 2+ 5 (6 goesinto 17 twice and |eaves a remainder 5)

5=12x 0+ 5(Thisrelation holds since 12 islarger than 5)

20=4 x5+ 0 (Here 4 goes into 20 five-times and leaves no remainder)

That is, for each pair of positiveintegersa and b, we have found whole numbers
gandr, satisfying therelation:

a=bg+r,0<r<b
Note that g or r can also be zero.

Why don’t you now try finding integersgandr for thefollowing pairs of positive
integers a and b?
(i) 10,3 (i) 4,19 (iii) 81,3
Didyou noticethat qandr are unique? These arethe only integers satisfying the
conditionsa =bqg + r, where0<r <b. You may have aso realised that thisis nothing
but arestatement of thelong division processyou have been doing all theseyears, and
that the integers g and r are called the quotient and remainder, respectively.

A formal statement of thisresultisasfollows:
Theorem 1.1 (Euclid’s Division Lemma) : Given positive integers a and b,
there exist unique integers g and r satisfyinga = bg+r, 0 <r < b.

Thisresult was perhaps known for along time, but wasfirst recorded in Book V11
of Euclid’sElements. Euclid'sdivision algorithm isbased on thislemma.
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An algorithm is a series of well defined steps
which gives a procedure for solving a type of
problem.

Theword algorithmcomesfrom the name
of the 9th century Persian mathematician
a-Khwarizmi. Infact, even the word ‘ algebra
is derived from a book, he wrote, called Hisab
al-jabr w’al-mugabala.

_A lemma is a proven statement used for Muhammadibn M usaal-K hwarizmi
proving another statement. (A.D. 780—850)

Euclid'sdivision agorithmisatechniqueto compute the Highest Common Factor
(HCF) of two given positive integers. Recall that the HCF of two positive integers a
and bisthelargest positive integer d that divides both a and b.

L et us see how the algorithm works, through an examplefirst. Suppose we need
to find the HCF of the integers 455 and 42. We start with the larger integer, that is,
455. Then we use Euclid’s lemmato get

455=42x 10+ 35

Now consider the divisor 42 and the remainder 35, and apply the divisionlemma

to get
42=35x1+7

Now consider the divisor 35 and the remainder 7, and apply the division lemma

to get
3B=7%x5+0

Notice that the remainder has become zero, and we cannot proceed any further.
Weclaim that the HCF of 455 and 42 isthedivisor at thisstage, i.e., 7. You can easily
verify this by listing al the factors of 455 and 42. Why does this method work? It
works because of the following result.

So, let us state Euclid’s division algorithm clearly.

To obtain the HCF of two positive integers, say ¢ and d, with ¢ > d, follow
the steps below:
Sep 1 Apply Euclid'sdivisionlemma, to c and d. So, we find whole numbers, g and
rsuchthatc=dg+r,0<r <d.
Sep 2: Ifr=0,distheHCFof cand d. If r # 0, apply thedivision lemmatodandr.

Siep 3 Continue the processtill the remainder iszero. The divisor at this stage will
be the required HCF.



ReaL NUMBERS 5

This algorithm works because HCF (c, d) = HCF (d, r) where the symbol
HCF (c, d) denotes the HCF of ¢ and d, etc.

Example 1 : Use Euclid's agorithm to find the HCF of 4052 and 12576.

Solution :
Step 1 : Since 12576 > 4052, we apply the division lemmato 12576 and 4052, to get
12576 = 4052 x 3 + 420
Step 2 @ Sincetheremainder 420+ 0, we apply the division lemmato 4052 and 420, to
get
4052= 420 x 9+ 272
Step 3 : We consider the new divisor 420 and the new remainder 272, and apply the
divisonlemmato get
420= 272 x 1+ 148
We consider the new divisor 272 and the new remainder 148, and apply the division
lemmato get
272=148x 1+ 124
We consider the new divisor 148 and the new remainder 124, and apply the division
lemmato get
148= 124 x 1+ 24
We consider the new divisor 124 and the new remainder 24, and apply the division
lemmato get
124= 24x5+4
We consider the new divisor 24 and the new remainder 4, and apply the division
lemmato get
24=4x6+0
The remainder has now become zero, so our procedure stops. Sincethe divisor at this
stage is 4, the HCF of 12576 and 4052 is 4.
Notice that 4 = HCF (24, 4) = HCF (124, 24) = HCF (148, 124) =
HCF (272, 148) = HCF (420, 272) = HCF (4052, 420) = HCF (12576, 4052).
Euclid's division algorithm is not only useful for calculating the HCF of very
large numbers, but also becauseit is one of the earliest examples of an algorithm that
a computer had been programmed to carry out.

Remarks :

1. Euclid’sdivisionlemmaand algorithm are so closely interlinked that people often
call former asthedivision agorithm also.

2. Although Euclid'sDivision Algorithm isstated for only positiveintegers, it can be
extended for al integers except zero, i.e., b # 0. However, we shall not discuss this
aspect here.
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Euclid’s division lemma/algorithm has several applications related to finding
properties of numbers. We give some examples of these applications below:

Example 2 : Show that every positive even integer is of the form 2q, and that every
positive odd integer is of the form 2q + 1, where q is some integer.

Solution : Let a be any positive integer and b = 2. Then, by Euclid’s agorithm,
a=2q+r, for someinteger =0, andr =0orr =1, because 0 <r < 2. So,
a=2qor2q+1.

If aisof theform 2q, then a is an even integer. Also, a positive integer can be
either even or odd. Therefore, any positive odd integer is of the form 2q + 1.
Example 3 : Show that any positive odd integer isof theform 4q + 1 or 4q + 3, where
g is some integer.

Solution : Let us start with taking a, where a is a positive odd integer. We apply the
division algorithmwithaandb = 4.

Since0<r <4, the possible remaindersare 0, 1, 2 and 3.

That is, a can be 4q, or 4q + 1, or 4q + 2, or 4q + 3, where q is the quotient.
However, since aisodd, a cannot be 4q or 4q + 2 (since they are both divisible by 2).

Therefore, any odd integer is of theform 4q + 1 or 49 + 3.
Example 4 : A sweetseller has 420 kaju barfis and 130 badam barfis. She wants to
stack them in such away that each stack has the same number, and they take up the

least area of the tray. What is the maximum number of barfis that can be placed in
each stack for this purpose?

Solution : This can be done by trial and error. But to do it systematically, we find
HCF (420, 130). Then this number will give the maximum number of barfisin each
stack and the number of stackswill then be the least. The area of the tray that is used
up will betheleast.

Now, let us use Euclid’s algorithm to find their HCF. We have :
420= 130x 3+ 30
130= 30x 4+ 10
30=10x3+0
So, the HCF of 420 and 130is 10.
Therefore, the sweetseller can make stacks of 10 for both kinds of barfi.
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EXERCISE 11
1. UseEuclid'sdivisionalgorithmto find the HCF of :
(i) 135and225 (i) 196and 38220 (iif) 867and255
2. Show that any positive odd integer isof theform 6q + 1, or 6q + 3, or 6q + 5, whereqis

someinteger.

3. Anarmy contingent of 616 membersisto march behind an army band of 32 membersin
a parade. The two groups are to march in the same number of columns. What is the
maximum number of columnsin which they can march?

4. UseEuclid’ sdivision lemmato show that the square of any positiveinteger is either of
theform 3mor 3m+ 1 for someinteger m.

[Hint : Let xbeany positiveinteger thenitisof theform 3g, 3q+ 1 or 3q + 2. Now sgquare
each of these and show that they can be rewritten in the form 3mor 3m+ 1.]

5. UseEuclid’'sdivision lemmato show that the cube of any positiveinteger isof theform
9m, 9m+1or 9m+8.

1.3 TheFundamental Theorem of Arithmetic

In your earlier classes, you have seen that any natural number can be written as a
product of its prime factors. For instance, 2 =2, 4 =2 x 2, 253 = 11 x 23, and so on.
Now, let ustry and look at natural numbers from the other direction. That is, can any
natural number be obtained by multiplying prime numbers? L et us see.

Take any collection of prime numbers, say 2, 3, 7, 11 and 23. If we multiply
some or all of these numbers, allowing them to repeat as many times as we wish,
we can produce a large collection of positive integers (In fact, infinitely many).
Letuslist afew :

7x11x23=1771 3x7x11x23=5313
2x3x7x11x23=10626 22 x3x7°=8232
22x 3x 7 x11x23=21252

and so on.

Now, let us suppose your collection of primes includes all the possible primes.
What is your guess about the size of this collection? Does it contain only a finite
number of integers, or infinitely many?Infact, there areinfinitely many primes. So, if
we combine all these primesin all possible ways, we will get an infinite collection of
numbers, al the primes and al possible products of primes. The question is— can we
produce all the composite numbers this way? What do you think? Do you think that
there may be a composite number which is not the product of powers of primes?
Before we answer this, let us factorise positive integers, that is, do the opposite of
what we have done so far.
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We are going to use the factor tree with which you are al familiar. Let us take
some large number, say, 32760, and factorise it as shown :

32760]

2 16380

2 8190

2 4095

3 1365

So we have factorised 32760 as2 x 2 x 2 x 3 x 3 x 5 x 7 x 13 as a product of
primes, i.e., 32760 = 22 x 32 x 5 x 7 x 13 asa product of powers of primes. Let ustry
another number, say, 123456789. This can be written as 3% x 3803 x 3607. Of course,
you have to check that 3803 and 3607 are primes! (Try it out for several other natural
numbersyourself.) Thisleadsusto aconjecturethat every composite number can be
written asthe product of powers of primes. In fact, this statement istrue, and iscalled
the Fundamental Theorem of Arithmetic because of its basic crucial importance
to the study of integers. Let us now formally state this theorem.

Theorem 1.2 (Fundamental Theorem of Arithmetic) : Every composite number
can be expressed (factorised) as a product of primes, and this factorisation is
unique, apart from the order in which the prime factors occur.
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An equivalent version of Theorem 1.2 was probably first
recorded as Proposition 14 of Book IX in Euclid’'s
Elements, beforeit came to be known asthe Fundamental
Theorem of Arithmetic. However, the first correct proof
was given by Carl Friedrich Gaussin his Disquisitiones
Arithmeticae.

Carl Friedrich Gaussis often referred to asthe * Prince of
Mathematicians' and is considered one of the three
greatest mathematiciansof all time, along with Archimedes
and Newton. He has made fundamental contributionsto —5¢| Friedrich Gauss
both mathematics and science. (1777 — 1855)

The Fundamental Theorem of Arithmetic says that every composite number
can be factorised as a product of primes. Actually it says more. It says that given
any composite number it can be factorised as a product of prime numbersin a
‘unique’ way, except for the order in which the primes occur. That is, given any
composite number thereis one and only one way to writeit asa product of primes,
aslong aswe are not particular about the order in which the primes occur. So, for
example, weregard 2 x 3 x 5 x 7 asthe same as 3 x 5 x 7 x 2, or any other
possible order in which these primes are written. This fact is also stated in the
following form:

The prime factorisation of a natural number is unique, except for the order
of its factors.

In general, given a composite number x, we factoriseit asx = p,p, ... p,, where
P,, P,..., p, are primes and written in ascending order, i.e., p, < p,
<...<p,. If wecombinethe same primes, we will get powers of primes. For example,

32760=2%x2%x2x3x3x5x7x13=22%x32x5x7x%x13

Oncewe have decided that the order will be ascending, then the way the number
isfactorised, isunique.

The Fundamental Theorem of Arithmetic has many applications, both within
mathematics and in other fields. Let uslook at some examples.

Example 5 : Consider the numbers 4", where n is a natural number. Check whether
thereis any value of n for which 4" ends with the digit zero.

Solution : If the number 4", for any n, wereto end with the digit zero, then it would be
divisibleby 5. That is, the prime factorisation of 4" would contain the prime 5. Thisis
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not possible because 4" = (2)>"; so the only primein the factorisation of 4"is 2. So, the
uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no
other primes in the factorisation of 4". So, there is no natural number n for which 4"
endswith the digit zero.

You have aready learnt how to find the HCF and LCM of two positive integers
using the Fundamental Theorem of Arithmetic in earlier classes, without realising it!
This method is also called the prime factorisation method. Let us recall this method
through an example.

Example 6 : Findthe LCM and HCF of 6 and 20 by the prime factorisation method.
Solution : We have : 6=2tx3and 20=2x2x5=22x51

You can find HCF(6, 20) = 2 and LCM(6, 20) =2 x 2 x 3 x 5 = 60, as done in your
earlier classes.

Note that HCF(6, 20) = 2! = Product of the smallest power of each common
prime factor in the numbers.

LCM (6, 20) = 22 x 3 x 5! =Product of thegreatest power of each primefactor,
involved in the numbers.

From the example above, you might have noticed that HCF(6, 20) x LCM(6, 20)
= 6 x 20. In fact, we can verify that for any two positive integers a and b,
HCF (a, b) x LCM (a, b) = a x b. We can use this result to find the LCM of two
positive integers, if we have aready found the HCF of the two positive integers.

Example 7 : Find the HCF of 96 and 404 by the prime factorisation method. Hence,
find their LCM.
Solution : The prime factorisation of 96 and 404 gives:
96=2°x3, 404=22x101
Therefore, the HCF of these two integersis 22 = 4.

96x 404  96x 404

= = 9696
HCF(96, 404) 4

Also, LCM (96, 404) =

Example 8 : Find the HCF and LCM of 6, 72 and 120, using the prime factorisation
method.

Solution : We have :
6=2x3, 72=28x3 120=22%x3 x5
Here, 2* and 3" are the smallest powers of the common factors 2 and 3 respectively.
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So, HCF (6,72,120) = 2! x 3!=2x3=6

23, 3 and 5! are the greatest powers of the prime factors 2, 3 and 5 respectively
involved in the three numbers.
o, LCM (6, 72, 120) = 28x 3? x 5! = 360

Remark : Notice, 6 x 72 x 120 # HCF (6, 72, 120) x LCM (6, 72, 120). So, the
product of three numbersis not equal to the product of their HCF and LCM.

EXERCISE 1.2
1. Expresseach number asaproduct of its primefactors:
(i) 240 (i) 156 (iii) 3825 (iv) 5005 (v) 7429

2. FindtheLCM and HCF of thefollowing pairsof integersand verify that LCM x HCF =
product of the two numbers.

(i) 26and91 (i) 510and 92 (iif) 336and 54
3. Find the LCM and HCF of the following integers by applying the prime factorisation
method.
() 12,15and21 (i) 17,23and29 (iii) 8,9and 25

Giventhat HCF (306, 657) = 9, find LCM (306, 657).
Check whether 6" can end with the digit O for any natural number n.
Explainwhy 7x11x13+13and 7 x 6 x 5x 4 x 3x 2 x 1+ 5 arecomposite numbers.

N o o M

Thereisacircular path around a sportsfield. Soniatakes 18 minutesto drive oneround
of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the
same point and at the sametime, and go in the same direction. After how many minutes
will they meet again at the starting point?

1.4 Revigtinglrrational Numbers

In Class X, you wereintroduced to irrational numbers and many of their properties.
You studied about their existence and how the rationals and the irrational s together
made up the real numbers. You even studied how to locate irrationals on the number
line. However, we did not prove that they were irrationals. In this section, we will

provethat /2, /3, </5 and, ingeneral, \/p isirrational, where pisaprime. One of

the theorems, we use in our proof, is the Fundamental Theorem of Arithmetic.

Recall, anumber ‘s iscalled irrational if it cannot be written in the form B,

where p and g are integers and q # 0. Some examples of irrational numbers, with
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which you are already familiar, are:

V2,4/3,\15, «, —Q, 0.10110111011110. .. etc.
\/é ’

Before we prove that /2 isirrational, we need the following theorem, whose
proof is based on the Fundamental Theorem of Arithmetic.

Theorem 1.3 : Let p be a prime number. If p divides &, then p divides a, where
a is a positive integer.

*Proof : Let the prime factorisation of a be asfollows:
a=pp,...p,wheep,p, ..., p, are primes, not necessarily distinct.
Therefore, & = (p,p, . . . PI(PP, - - - P) = PEP5 . . . P2 [
Now, we are given that p divides a2 Therefore, from the Fundamental Theorem of
Arithmetic, it follows that p is one of the prime factors of a®. However, using the

uniqueness part of the Fundamental Theorem of Arithmetic, we realise that the only
prime factors of &> arep, p,, . . ., p,. Sopisoneof p, p,, ... P,
Now, sincea=p, p,...p,, pdividesa.

We are now ready to give a proof that /2 isirrational.
The proof is based on atechnique called ‘ proof by contradiction’. (Thistechniqueis
discussed in somedetail in Appendix 1).

Theorem 1.4 : J2 isirrational.

Proof : Let us assume, to the contrary, that /2 isrational.
So, we can find integersr and s (# 0) such that (/2 = Ls
Supposer and s have acommon factor other than 1. Then, we divide by the common

factor to get /2 = 2 whereaand b are coprime.
b

So, b2 =a

Squaring on both sides and rearranging, we get 2b? = a2. Therefore, 2 divides a2
Now, by Theorem 1.3, it followsthat 2 divides a.

So, we can write a = 2c for some integer c.

* Not from the examination point of view.
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Substituting for a, we get 2b? = 4¢?, that is, b? = 2c2

Thismeansthat 2 divides b?, and so 2 dividesb (again using Theorem 1.3 with p = 2).
Therefore, a and b have at least 2 as a common factor.

But this contradicts the fact that a and b have no common factors other than 1.

This contradiction has arisen because of our incorrect assumptionthat /2 isrational.

So, we conclude that /2 isirrational. n

Example 9 : Provethat /3 isirrational.

Solution : Let us assume, to the contrary, that /3 isrational.

a

b

Suppose a and b have a common factor other than 1, then we can divide by the
common factor, and assume that a and b are coprime.

Squaring on both sides, and rearranging, we get 3b? = a2.

Therefore, a?isdivisibleby 3, and by Theorem 1.3, it followsthat aisalso divisible
by 3.

So, we can write a = 3c for some integer c.
Substituting for a, we get 3b? = 9¢?, that is, b? = 3c?.

Thismeansthat b?isdivisibleby 3, and so bisalso divisible by 3 (using Theorem 1.3
with p = 3).

Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are coprime.

That is, we can find integers a and b (# 0) such that /3 =

This contradiction has arisen because of our incorrect assumptionthat /3 isrational.
So, we conclude that /3 isirrational.
In Class X, we mentioned that :

e thesum or difference of arational and an irrational number isirrational and

e the product and quotient of a non-zero rational and irrational number is
irrational.

We prove some particular cases here.
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Example 10 : Show that 5— /3 isirrational.
Solution : Let us assume, to the contrary, that 5— /3 isrational.

That is, we can find coprime aand b (b # 0) such that 5—- /3 = %.

Therefore, 5— % =3

Rearranging this equation, we get /3 = 5 — % = Sbl; a

Sincea and b areintegers, we get 5 —% isrational, and so /3 isrational.
But this contradicts the fact that /3 isirrational.

This contradiction has arisen because of our incorrect assumption that 5 — /3 is
rational.

So, we concludethat 5 — +/3 isirrational.

Example 11 : Show that 32 isirrational.
Solution : Let us assume, to the contrary, that 3.2 isrational.
That is, we can find coprime a and b (b # 0) such that 342 = %

Rearranging, we get /2 = 2.

a
Since 3, aand b are integers, N isrational, and so /2 isrational.

But this contradicts the fact that /2 isirrational.
So, we conclude that 3./2 isirrational.

EXERCISE 1.3

1. Provethat /5 isirrational.
2. Provethat 3 + 21/5 isirrational.

3. Provethat thefollowing areirrationals:

0) % (i) 745 (i) 6++/2
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1.5 Revisiting Rational Numbersand Their Decimal Expansions

In Class IX, you studied that rational numbers have either a terminating decimal
expansion or a non-terminating repeating decimal expansion. In this section, we are

going to consider a rational number, say p(q # 0), and explore exactly when the
decimal expansion of g is terminating and when it is non-terminating repeating
(or recurring). We do so by considering several examples.

L et us consider the following rational numbers:
(i) 0.375 (i) 0.104 (iii) 0.0875 (iv) 23.3408.

Now () 0375=- -3/ (i) 0.104= 1% 10
1000 10 1000 10
(i) 0.0875= o> _ 87 (v) 23:3408 = 508 _ 233408
10000 10 10000 10

As one would expect, they can all be expressed as rational numbers whose
denominators are powers of 10. Let us try and cancel the common factors between
the numerator and denominator and see what we get :

375 3x5° 5 3 104 13 x 2° _13
i) 0.375=—= == i) 0104=""= -2
2
(i) 0.0875=27_ 7 (V) 233408 — 2334}108 _ 287521
10* 2*x5 10 5

Do you see any pattern? It appears that, we have converted a real number

whose decimal expansion terminates into arational number of the form ap wherep

and g are coprime, and the prime factorisation of the denominator (that is, g) hasonly

powers of 2, or powers of 5, or both. We should expect the denominator to look like
this, since powers of 10 can only have powers of 2 and 5 as factors.

Even though, we have worked only with a few examples, you can see that any
real number which has a decimal expansion that terminates can be expressed as a
rational number whose denominator isapower of 10. Also the only primefators of 10
are 2 and 5. So, cancelling out the common factors between the numerator and the

denominator, we find that this real number isarational number of the form g where

the primefactorisation of qisof theform 2"5™, and n, mare some non-negativeintegers.
Let uswrite our result formally:
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Theorem 1.5 : Let x be a rational number whose decimal expansion terminates.

Then x can be expressed in the form ap where p and g are coprime, and the

prime factorisation of q is of the form 2"5™, where n, m are non-negative integers.

You are probably wondering what happens the other way round in Theorem 1.5.
That is, if we have arational number of theform ap and the prime factorisation of g
is of the form 2"5™, where n, m are non negative integers, then does ap have a
terminating decimal expansion?

Let usseeif thereis some obvious reason why thisistrue. You will surely agree

a
that any rational number of theform —» wherebisapower of 10, will have aterminating
decimal expansion. So it seems to make sense to convert a rational number of the

a
form P, where qisof theform 2"5™, to an equivalent rational number of theform b’
q

where bisapower of 10. Let us go back to our examples above and work backwards.

3 3 3x5 375
S-S =20 =2 2-0375
8 22 22x5 10°

. 13 13 13x2® 104

i) —="="" =T -0.104
() 125 52 2°2x5 10°

7 _ 7 _7x5 875

= = =-"-0.0875
80 2*x5 2*x5* 10*

@)

(i)

2 6
iv) 14588 _ 2% % 74>< 521 _ 2 ><47 X :'?21 _ 233i08 _ 233408
625 5 2" x5 10

So, these examples show us how we can convert arational number of the form

a
_p, where q is of the form 2"5™, to an equivalent rational number of the form b’
q

wherebisapower of 10. Therefore, the decimal expansion of such arationa number
terminates. Let uswrite down our result formally.

Theorem 1.6 : Let x = P be a rational number, such that the prime factorisation
of q is of the form 2"5”9, where n, m are non-negative integers. Then x has a
decimal expansion which terminates.
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We are now ready to move on to the rational numbers 0.1428571
whose decimal expansionsare non-terminating and recurring. 7 ) 10
Onceagain, let uslook at an exampleto seewhat isgoing on. 7
We refer to Example 5, Chapter 1, from your Class IX ©

1 28
textbook, namely, 2 .Here, remaindersare 3, 2,6, 4,5, 1, 3, 0
14
2,6,4,5,1,...anddivisoris7. ®0

Noticethat the denominator here, i.e., 7 isclearly not of 6
the form 2"5™. Therefore, from Theorems 1.5 and 1.6, we %E?

1
know that 2 will not have aterminating decimal expansion. (?90
Hence, 0 will not show up as a remainder (Why?), and the @0
remainders will start repeating after a certain stage. So, we 7
will have ablock of digits, namely, 142857, repeating in the @
quotient of

7 1
What we have seen, in the case of 7 istruefor any rational number not covered
by Theorems 1.5 and 1.6. For such numbers we have :

Theorem 1.7 : Let x = g be a rational number, such that the prime factorisation

of g is not of the form 2"5™ where n, m are non-negative integers. Then, X has a
decimal expansion which is non-terminating repeating (recurring).

From the discussion above, we can conclude that the decimal expansion of
every rational number is either terminating or non-terminating repeating.

EXERCISE 14

1. Without actually performing the long division, state whether the following rational
numberswill have aterminating decimal expansion or anon-terminating repeating decimal

expansion:

13 Y 64 15

0 3125 () g () 255 ™) 7600
29 3 129 6

V) 33 () Sz Vi) s i) o2
35 77

(i) 50 ® 210
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2.

3.

Write down the decimal expansions of those rational numbers in Question 1 above
which have terminating decimal expansions.

The following real numbers have decimal expansions as given below. In each case,
decidewhether they arerational or not. If they arerational, and of theform P what can
you say about the prime factors of ? q

(i) 43.123456789 (i) 0.120120012000120000... (i) 43123456789

1.6 Summary

In this chapter, you have studied the following points:

1

Euclid' sdivisionlemma:

Given positiveintegersa and b, there exist whole numbersq and r satisfyinga=bq+r,
0<r<h.

. Euclid’'sdivision algorithm : Thisisbased on Euclid’sdivision lemma. According tothis,

the HCF of any two positive integersa and b, with a > b, is obtained as follows:
Sep 1: Apply thedivisionlemmato find gand r wherea=bqg+r,0<r <b.
Sep 2: 1fr=0,theHCFisb. Ifr #0, apply Euclid’'slemmatobandr.

Step 3: Continuethe processtill the remainder iszero. The divisor at this stage will be
HCF (a, b). Also, HCF(a, b) = HCF(b, r).

. The Fundamental Theorem of Arithmetic:

Every composite number can be expressed (factorised) as a product of primes, and this
factorisation isunique, apart from the order in which the prime factors occur.

. If pisaprimeand p divides a2, then p divides g, where ais a positive integer.

. Toprovethat /2, \/3 areirrationals.
. Let xbearational number whose decimal expansion terminates. Then we can expressx

intheform g , Where p and g are coprime, and the primefactorisation of gisof theform

2"5™ where n, mare non-negative integers.

. Letx= g be arational number, such that the prime factorisation of qisof theform 2"5™,

wheren, mare non-negativeintegers. Then x hasadecimal expansion which terminates.

. Letx= g be arational number, such that the prime factorisation of qisnot of theform

2" 5™ where n, m are non-negative integers. Then x has a decimal expansion which is
non-terminating repeating (recurring).
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A NoTe To THE READER

You have seen that :

HCF (p,q,r) xLCM (p,q,r) #pxqxr,wherep, g, r are positive integers
(see Example 8). However, the following results hold good for three numbers
p,gandr :

p-q-r-HCF(p, q, 1)

LEM (P40 = Her . q) - HCF(aur) - HCF(pir)

p-q-r-LCM(p, g, r)
LCM(p,q)-LCM(q, r)-LCM(p,r)

HCF (p,q,r) =




